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Abstract--A modular structure is one which is formed from a repeated module, most commonly a
regular truss. These are often reduced to equivalent uniform continua so that standard beam theory
can be applied. This paper examines the basis of standard beam theory. demonstrating it to be a
particular case of a more general theory. It is shown that more accurate results can be obtained by
a proper application of the theory to both discrete modular systems and to normal continuous
beams.

L THE CHARACTERISTIC RESPONSE

The general theory of beams was discussed in an earlier paper (Renton, 1991). It is not
based on the Bernoulli-Euler theory but on Saint-Venant's principle and the principle of
superposition for small deflections of linearly-elastic materials.

Consider the infinitely long modular beam shown in Fig. I (a). A resultant moment M
is applied to the left-hand side of the Oth module (the resultant shear force S is zero in this
instance). The Xth module is close to it and the Nth module is a long distance from it. The
resultant moment on the Xth module will also be M. Suppose that the structure is sectioned
just to the left of the Xth module, but that the stress interactions are still applied to it. This
can be compared with the original beam shifted X modules to the right. From the principle
of superposition, an admissible stress pattern is given by taking the difference of the patterns
in the two cases. This has a zero resultant moment at the left-hand end, and applying Saint­
Venant's principle, the stress and strain pattern in the (N-X)th module must be sensibly
zero too. This means that in the original beam, although the patterns of stress and strain
may not be uniform within a module, the patterns in the (N-X)th and the Nth modules are
sensibly the same. This leads to Theorem 1:

If only a resultant moment is applied to the end of a modular beam, at large
distances along it, the patterns of stress and strain in each module tend towards a
unique response, which will be called the characteristic response to a moment.
Conversely, if an admissible stress pattern can be found, which is the same in all
modules and only has a resultant moment, this must be the characteristic response
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Fig. I. Response of a modular beam.
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to a moment. If this were not so, the difference between the two responses would
violate Saint-Venant's principle.

For Saint-Venant's principle to apply, the individual modules must not be mechanisms. An
example of this exception is given by Hoff (1945).

Returning to Fig. lea), consider the case when only the shear force S is applied (M is
zero). If the length of each module is m, then the resultants on the left-hand face of the Xth
module will the shear force S and a bending moment - XS/m. By the same arguments as
before, the beam can be sectioned here and the difference taken between the response of
the beam to the right and the response of the shifted beam, to which a moment - XS/m
has been added. This should again produce stress and strains in the (N-X)th module which
are sensibly zero. This means that the difference in response between that in the original
Nth module and that in the original (N-X)th module is given by the characteristic response
to a moment of - XS/m. This leads to Theorem 2:

If a shear force is applied to the end of a modular beam, the patterns of stress and
strain in modules far from the end can be divided into a linearly-varying component
which is the characteristic response to a moment and a constant component called
the characteristic response to a shear force. By the same arguments as before, if a
pattern of stress can be found which varies linearly between modules and has only
a resultant shear force and bending moment, this must be a combination of the
characteristic responses to each.

Beam theory relies on the fact that any loading produces stresses and strains which tend to
decay towards the characteristic responses along the beam, and these responses alone can
represent the loaded state with sufficient accuracy for most engineering purposes, provided
that Saint-Venant's principle applies strongly enough. Similar arguments to the above apply
to ordinary beams in which the modules are replaced by a prismatic continuum. No
assumption is made that plane sections remain plane. The constant (characteristic) response
of an anisotropic beam to a bending moment is given by Lekhnitskii (1981). For a bending
moment My about the principal axis y of a beam with x as its centroidal axis, the dis­
placements in the x,y and z directions, u,v and w, can be written as

(1)

Here I is the second moment of area about the y axis and the coefficents sij are compliances
of the material. If it is isotropic, they take the values

V
S12 = SI3 = - E; 5 14 = SIS = S16 = 0, (2)

where E is Young's modulus and v is Poisson's ratio. The stresses and strains are given by

8xx = 8yy = 8zz = {yz = Izx Yxy Myz
SII S12 Sl3 S14 SIS 516 I'

(3)

For an isotropic beam, these expressions become the usual ones associated with the
Bernoulli-Euler theory. Plane sections remain plane because for a particular value of x, u
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varies linearly with z. In general however, the characteristic response produces a curved
cross-section. One result of this, as will be seen later, is that it is necessary to rethink what
is meant by the rotation of a particular cross-section.

2. COUPLING EFFECTS

If a prismatic beam is in a constant state of strain along its axis, the most general
expressions for the displacements can be written as

u = x(e-l/Jzy+l/Jyz) + U(y, z)

v= -xze+~l/Jzx2+V(y,z)

w = xye-~l/JyX2 + W(y, z) (4)

excluding arbitrary rigid-body motions. Here, e is a uniform rate of twist, l/Jy and l/Jz are
uniform rates ofcurvature about the y and Z axes and e is a uniform axial strain. Comparing
these expressions with eqn (l) shows that

(5)

so that a bending moment can produce torsion in an anisotropic beam. The most general
relationship between the load resultants and the corresponding deformations of a beam
can be written as

e III 112 113 114 115 116 T

l/Jy 12l 122 123 124 125 126 My

l/Jz 131 132 133 134 135 136 Mz
(6)

e 141 142 143 144 145 146 P

Yy 151 152 153 154 155 156 Sy

Yz 161 162 163 164 165 166 Sz

where Yy and yz are the shear strains corresponding to the resultant shear forces Sv and Sz
in the y and z directions, T is the resultant torque, P is the resultant axial force and
it follows from Betti's reciprocal theorem that the matrix of flexibility coefficients Ii} is
symmetric.

A degree of uncoupling can be achieved by defining the coordinates (Ymzo) of the line
of action of P to be such that it does not produce bending, thus eliminating/24 and/34 (and
by implication 142 and 143)' This would normally be referred to as the 'centroid' of the
section, although more generally it has no geometric significance. Likewise, it is possible to
define a 'shear centre' eliminating the coupling between torsion and shear given by the
coefficients II 5 and/16 and 'principal axes' y and z eliminating the flexural coupling given
by 123-

The shear flexibility is determined from the shear strain energy per unit length, U"
stored in the characteristic response to a shear force. This has components related to the
linearly-varying bending moment as well as those directly attributable to shear. If x is the
distance along the beam from a section at which the resultant load is a shear force S, it
takes the form

(7)

wherelmm,lms andiss are 122, 126 and/66 for bending about the y axis or 133,/35 and/55 for
bending about the z axis. For ordinary beams, no coupling terms Ims have been found.
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However, for modular beams, these terms do exist. This is because the module is of finite
length so that there is a degree of arbitrariness about the definition of the bending moment
acting on it in the presence of a shear force. By analogy with the above definitions of
'centroid' and 'shear centre', the bending moment will be defined as that acting at a point
along the module such that no coupling between bending and shear occurs, so eliminating
Ims. This point will be referred to as the flexural centre of the module. This is normally, but
not always, at the midsection of the module.

3. END CONDITIONS

It has been argued that the end conditions for ordinary beams are well understood
and that they only apply weakly to modular structures such as trusses. As will be seen, this
is not necessarily true. Consider the plane-stress analysis of a cantilever given by Timo­
shenko and Goodier (1970) and others, Dugdale and Ruiz (1971) and Ford and Alexander
(1977) for example. It is of unit thickness, length I, depth 2c, and a parabolic shear stress
distribution is applied to the free end with a downwards resultant denoted here by F. All
the internal and boundary conditions are satisfied except those at the fixed end. The x axis
lies along the middle line of the beam, but the origin will be taken at the fixed end, for
reasons which will become apparent later. The expressions for the deflections then take the
form

Fy Fi
u = _(l-X)2 - -(2+v)-ey+g

2EI 6EI

(8)

where

and G is the shear modulus.
The constants d to h are determined from the conditions that the centroid does not

move at the fixed end, and locally the vertical face at the centroidal axis does not rotate.
This implies that the fixed-end horizontal displacement is

(9)

as shown in Fig. 2(a), and the vertical displacement of the middle line is given by

y

x,u
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Fig. 2. Horizontal displacements at a fixed end.
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(10)

However, this gives undue weight to the conditions in the immediate vicinity of the origin.
The solution given by eqn (8) has the properties of the characteristic response to

bending and shear described above. The associated beam theory is a macroscopic analysis
relating resultant moments and shear forces to the corresponding rotations and dis­
placements through which they do work. These rotations and displacements may have no
relationship to those of a particular zone on the cross-section. Taking the fixed end to
provide a workless reaction, the appropriate conditions to use on the end section are

(11)

giving in particular

(12)

as shown in Fig. 2(b) and

(13)

By measuring x from the fixed end, only the cubic and quadratic terms in eqns (10) and
(13) are associated with normal flexure, and are the same in both cases. The remaining
terms are related to shear and rigid-body motion.

On the basis of the theory described above, a good match should not be expected in the
vicinity of the ends, but local effects should decay along the beam towards the characteristic
response. This may still leave an error, which is expressed by a rigid-body displacement
and rotation.

This can be investigated experimentally, using finite-element analysis. Figure 3 shows
the much-exaggerated deflected form of a cantilever 1 m long, 10 cm deep and I cm wide.
It is divided into a thousand square plane-stress finite elements. A shear force of 1 kN is
applied to the free end, using a parabolic distribution of shear forces on the elements. All
displacements of the elements are prevented at the fixed end.

A best-fit cubic polynomial for Dc was generated from values at equally-spaced data
points in the computer analysis. To avoid local effects, points within 10 cm (the depth of
the beam) of the fixed end were not used. The cubic was interpolated from the results for
different data samples, looking for the best match with the flexural terms. This was found
to be

Fig. 3. Finite-element representation of a cantilever.
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Dc = [-967.0x 3 +2,901x2 + 11.81x-0.565) /lm (14)

where x is in metres, Young's modulus is 206.8 GPa, and Poisson's ratio is 0.29. The
corresponding result given by eqn (10) is

Dc = [-967.lx3 +2,90Ix2 +18.7Ix)/lm

and that given by eqn (13) is

Dc = [-967.lx3 +2,90Ix2 + 15.39x-0.42I) /lm.

(15)

(16)

It will be seen that the above expression for workless reactions corresponds more closely
than eqn (15) to the finite-element analysis. This in turn indicates that truly fixed ends
provide even more constraint against deflection.

4. THE GOVERNING EQUATIONS FOR MODULAR BEAMS

Suppose that the middle section of a typical module is at a distance x from an end
where a pure shear force S is applied, and that the analysis of its characteristic response
shows that the strain energy stored in the module is mUs where U, is given by eqn (7). The
flexural centre is a further distance me along the module, and at this point the expression
separates out into its flexural and shear components,

(17)

where

In order to aid comparisons with ordinary beam theory, these flexibilities will be denoted
by the more familiar expressions

1
fmm = EI' (18)

although in general the form given by eqn (6) is preferable.
Beam problems would normally be cast and solved in terms of differential equations

and integrations. For modular beams, this can be done in terms of difference equations
and summations. The functions take integer parameters, and the operators used here are
defined by

Ef(X) = f(X + I)

~f(X) = f(X + I) - f(X) = (E - I )f(X)

Vf(X) = f(X) -f(X-I) = (1- E- I )f(X)

~Vf(X) = M~r(X)] = (E+E- I -2)f(X).

(19)

It is usually convenient to count the modules of a beam starting from zero, with the Nth
being a virtual module whose left-hand side is the right-hand end of the beam, as shown in
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Fig. 4. Basic relationships for modular beams.
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Fig. 4. Details of the Xth element are shown, the moments acting on its left- and right-hand
faces being M x and Mn 1 respectively, in the senses shown. The shear force acting on the
module is Sx and the moment at the flexural centre is Mx', (hogging positive). Distributed
loads are applied at the module junctions, that acting at the left-hand junction of module
X being Px. The displacement and rotation through which Px and M x do work are vx and
Ox respectively. For equilbrium,

Px = SX-l -Sx = -VSx

Sxm = Mx-Mx+ 1 = -I:!>.Mx

M'x = Mx-Sxm(~+e).

The strain energy in the module is given by

(20)

(21)

Suppose for the moment that the right-hand side of this module is fixed, so that both vx+ 1

and On 1 are zero. Then from Castigliano's theorem, the deflections of the left-hand side
are given by

I au
Vx = -m asx'

au
O'x = m ~M .

o x
(22)

If a rigid-body motion is now given to the system so that the right-hand side of the
module is displaced through VX+ 1 and rotated through On h the general expressions for the
displacement and rotation of the left-hand side of the module are found to be

(23)

For convenience, Vx will be divided into its components, v/ associated with the shear of
the module and vxm associated with the flexure of the module, so that from eqns (20) to
(23),
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mSx
~vx=-­

K,

1. D. Renton

(24)

These can either be solved directly, or further use made of eqn (20) to derive the forms

~Vvx =

(25)

Taking the ordinate x as equivalent to mX, the distributed load Px as equivalent to Px/m
and using the Taylor expansion

. df m 2 d 2 f
Ef(x) =f(x+m) =/(x)+m-

d
+-2 -'0 + ...

x dx~

and then allowing m to tend to zero in the above equations, gives at the limit

Px d4V~;1 Px d'f}c

K,
,

dx4 £1' dx'

Px
El

(26)

which is the continuum equivalent of eqn (25). [Values of K, for the continuum problem
have been given previously, Renton (1991).]

5. SOME STANDARD SOLUTIONS

As in eqn (26), the shear displacement, v,-, of ordinary prismatic beams is governed
by a second-order differential equation. The two constants of integration correspond to
two boundary conditions, one at each end (relating to shear force and displacement). The
flexural displacement, vx

m
, is governed by a fourth-order equation, implying two boundary

conditions at each end (relating to bending moment, shear force, rotation and displace­
ment). The corresponding boundary conditions for the modular beam are exactly the same.

As an example, suppose that the cantilever shown at the top of FigA is loaded only by
linearly-varying loads at the module junctions given by

Px = XP.

The end conditions at the left- and right-hand ends are then

M o = So = 0 and eN = YN = 0,

respectively. Formulae required in the following solutions will be found in the Appendix.
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From statics.

so that from eqn (24),

mP
f1v~ = - -2 (X 2 +X)

K,

which, on solving for the boundary conditions at the right-hand end, gives

mP
v~ = 6K, (N

3
-X

3
-N+X)

1433

(27)

Using the above expression to determine 8x~ 1 in the second of eqns (24) and solving for
zero displacement at the right-hand end gives

The total displacement L'x is the sum of v/ and vx''', For most common problems, e is zero,
which simplifies these expressions considerably.

In the case shown at the top of Fig.4 when no distributed load is applied,

By similar methods to those described earlier, these expressions can be developed to
give the slope-deflection equations which could be used when modular beams form the
components of macro-structures, These take the form

Mo = _;_~I-:;-__ {m80[4N2 +s+ 12e(e+ N)] +m8N [2N 2-s-12e2
] -6<5(N+2e)}

nrN(N- +s)

EI f J 2 J }-M" = J, Jlm80[2N--s-12e ]+m8N [4N"+s+12e(e-N)]-6<5(N-2e)
m-lv(N" +s)

6EI _
So = S,y = [m80(N+2e)+m8N (N-2e)-2o] (30)

m 3 N(N 2 +s)

where
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l2E1
S=-~-1.

m2 Ks

(31)

If m is allowed to tend to zero in the above equations, mN remaining finite, they become
the slope-deflection equations for a prismatic beam.

Other standard solutions are as follows. For a uniformly-loaded cantilever with a force
P at each module junction, but only ~P at the tip, the tip deflection is

(32)

where e is the offset towards the fixed end, as in Fig.4. For a simply-supported beam with
2N modules, with a downwards force F applied at the centre, the central deflection is

Fm 3
3 FmN

VN = 24E1[4N -N+ l2eN(e+N)] + 2K
s

• (33)

Here, e is the offset towards the centre and one of the simple supports is on rollers. (The
assumption that there is no resultant axial force in the modular beam is implicit in the
analysis.) For the same beam supporting a uniform distributed load P at each module
junction,

(34)

If the ends of the above beam are fixed and a central point load F applied,

(35)

(Note the absence of terms in the offset e in this instance.) Finally, if instead this beam
carries a uniform load P at each junction,

(36)

If e is zero and IlKs is replaced by (1IKs-m2/6E1) the expressions given by eqns (33), (35)
and (36) would have been predicted by treating the modular beam as if it were an ordinary
continuum. This approach has been used by Saka and Heki (1981). They derived shear
stiffnesses for specific pin-jointed trusses which correspond to this substitution. However,
eqns (32) and (34) show that it cannot be relied on as a general rule. Also, from energy
considerations, one would expect this flexibility to be positive-definite.

6. EXAMPLES

The only modular structures considered here will be pin-jointed or rigid-jointed plane
trusses. The analysis is applicable to any regular modular system, and the flexibilities of
pin-jointed space trusses is the subject of another paper (Renton, 1995). Some of the basic
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Fig. 5. Plane truss modules.

properties can be discussed using the three modules shown in FigS The breadth and depth
of each of the modules will be denoted by m and h, respectively. Their flexibilities are most
readily expressed in terms of the axial-stiffness parameters EA;t3 and the flexural-stiffness
parameters EI/m2h2! of the component bars of the module, where! is the length of a
component bar, A is its cross-sectional area, and the other terms have been defined
previously. The axial-stiffness parameters for the top and bottom horizontal bars will be
denoted by t and b, respectively, and those for any vertical or diagonal bars by v or d,
respectively. The flexural-stiffness parameters for the horizontal and vertical bars in the
third module (which is the only rigid-jointed unit) will be denoted by H and V, respectively.

The module flexibilities for the Warren truss shown in Fig.5(a) are then

(37)

If the module is shifted by half a bay-width either way, so that the lower chord bars are
bisected instead of the upper ones, t is replaced by b in the expression for the shear flexibility.
Note that the bending flexibilty could have been derived from an imaginary beam consisting
of the upper and lower chord members only. This has been a common approximation used
in estimating the deflections of trusses, but is inappropriate for the cross-braced truss in
Fig.5(b). For this, the flexibilities are

1 2 [2dV+(b+t)(2d+V) J I I (I [ d(b-t) J2)
EI= m 3h2 dv(b+t)+2bt(2d+v) , Ks = mh 2 2d+

v
dv(b+t)+2bt(2d+v) .

(38)

If the top and bottom chord stiffnesses are the same, the bending flexibility again reduces
to the previous simple approximation. The reason that it works in both cases is that pure
flexure without axial loading occurs without any strains being induced in the bars between
the upper and lower chords. In the former case, this is evident from statics, and in the latter
case, the intermediate bars form mechanisms permitting the relative movements of the
upper and lower joints to be in equal and opposite senses. The module of a Vierendeel truss
shown in Fig. 5(c) will be taken to have identical upper and lower chord members, so that
band t are equal. Its flexibilities are then
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(39)

In all three cases, the eccentricity e of the flexural centre from the middle of the module is
zero.

The module of the Warren truss is statically determinate, so that the characteristic
mode of response to a resultant bending moment and shear force is in fact the only possible
response. Also, the lower joints of the truss are the only ones on the module boundaries.
This means that the resultant shear forces acting on the modules and the deflections through
which they do work correspond to actual joint loads and displacements. It follows that the
above analyses give exact results for the displacements of the lower joints of such trusses,
if these are the joints which are loaded and supported. The fixed-ended solutions given by
eqns (35) and (36) are also exact if the upper and lower chord members have the same axial
stiffnesses. This is because no resultant axial forces are then induced by the supports (it
being implicit in the analysis that the modular beam is subject to resultant bending moments
and shear forces only). Suppose for example that the bars of the truss are all of the same
unit length and axial stiffness. The EI value for the module is then 3/8 and the Ks value is
1/3. If the truss is a cantilever consisting of five modules with a unit end shear force applied,
the tip displacement can be deduced from the second of eqns (29) and is 125 units, 110
units resulting from the flexural terms and 15 units from the shear term. This total is exact
(as can be checked by computer analysis). The shear deflection is then 13.6% of the flexural
deflection. For a rectangular beam in plane stress of the kind described earlier, but with the
same depth/span ratio as the Warren truss, the shear deflection is only 2.32% of the flexural
deflection. This indicates that the shear behaviour of trusses is more significant than that
of ordinary beams. It will be seen later that it can be the dominant effect.

The module of the cross-braced truss shown in Fig.5(b) is not statically determinate,
and its boundary loads and displacements are not associated with single joints. For this
reason, the results are no longer exact. As an example, the EA value for the top chord bars
will be taken as one unit, and taken as six units for the other bars. The values of m and h
will be taken as two and one units, respectively. This gives an EI value for the module of
1.312 and a K s value of 2.060. The EI value, given by the simple analogy with a beam
consisting of the upper and lower chords only, is 0.8571. The tip deflection of this truss
acting as a cantilever with an end shear force can be analysed as before. Comparisons
between the results predicted by different methods are made in the following table.

Tip deflections of cross-braced trusses

N Computer Simple analogy % error Modular beam % error

I 2.424 3.111 28.5 2.495 2.92
2 16.87 24.89 47.5 17.18 1.84
3 55.53 84.00 51.3 56.25 1.29
4 130.6 199.1 52.5 131.9 0.98
5 254.2 388.9 53.0 256.3 0.81

The Vierendeel truss becomes a multi-storey portal frame when turned through 90°.
Lin and Stotesbury (1981), in discussing the design of skyscrapers, comment on the relative
importance of overall bending and racking (shear). They state that 'The cantilever deflection
due to column shortening and lengthening (produced by overall turning moment) is usually
of secondary importance until the building is some 40 stories or higher'. Consider the case
where such a frame is subject to a uniform side pressure p, so that eqn (32) applies. In Fig.
6, p is taken as 200 N/m, the height of each storey (m) as 5 m and its width (h) as 10 m and
the beams used have a common section with a cross-sectional area of 100 cm2

, second
moment of area 40,000 cm2 and Young's modulus of 200 GPa. The deflected forms,
generated by normal computer structural analysis, are much exaggerated of course. The
circles indicate points of contracurvature. As the frame is subject to a distributed side load,
the resultant shear force, and hence the shear slope, diminishes upwards from the base.
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Fig. 6. Deflections of multi-storey portals.
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However, the flexural slope is zero at the base and increases with height. At the points of
contracurvature, flexure-dominant behaviour gives way to shear-dominant behaviour. (The
term contraflexure would obviously be inappropriate under these circumstances.) The ten­
storey frame on the right is thus mostly dominated by shear effects, but the forty-storey
frame on the left is about equally dominated by each. The module bending stiffness £1 is
100.2 GN m 2 and its shear stiffness Ks is 15.40 MN. The computer results and the results
obtained from eqn (32) are compared in the following table. (L is understood to be the
overall length, that is, mN.)

Tip deflections of multi-storey portal frames

Stories
Computer deflection

(mm)
Bending deflection

pL4/8EI
Shear deflection

pC/2K, Bending + shear
----------- --------_ .. - --

10
20
30
40

15.91
86.03

267.15
653.75

1.56
24.96

126.36
399.36

16.23
64.94

146.11
259.75

17.79
89.90

272.47
659.11

In this case, the contribution of flexure to the sideways displacement at the top becomes
dominant when the number of stories is greater than 32.

7. CONCLUSIONS

In establishing the basis ofthe engineering theory of beams, it has proved necessary
to discard several commonly-held beliefs about its nature. Although originally based on
the hypothesis that plane sections remain plane, this is not a fundamental assumption, but
emerges as the correct condition for the bending of homogenous, isotropic beams. Attempts
to generalise this hypothesis, such as that of Noor et al. (1978), can be misleading. Likewise,
the appropriate beam deflections to use may not be those of the centroidal axis, as assumed
by Timoshenko and Goodier (1970) or Donnell (1976). Instead, the displacement of a
beam section is defined as that through which the resultant shear force does work, and its
rotation as that through which the resultant moment does work. This has implications,
not only for the formulation of the governing equations but also for understanding end
conditions. Equations (26) show that there is a relationship between the derivatives of the
flexural displacement, the shear displacement and the section rotation. However, integrating
these relationships and discarding the coefficients of integration as proposed by Donnell
[ibid. (3.60)], may not be justified on the grounds suggested. This means that some of the
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simple geometrical relationships between these parameters may be lost. The use of energy
methods seems to be both more general in application and less vulnerable to implicit
assumptions than geometrical methods. The investigation also illustrates that beam theory
is only concerned with macroscopic behaviour. That is, the overall rotation and dis­
placement of a beam in response to resultant moments and shear forces. No more can be
said about the finer details unless localised behaviour is analysed in terms of stress and
strain patterns which decay along the beam.

Previously, beam theory was applied to give the deflections of trusses by trying to
establish the properties of equivalent continua. As the shear behaviour of trusses is usually
more significant than the shear behaviour of beams, it is important to include this in the
analysis. However, if the continuum analogy is used, the shear stiffness of the truss appears
to vary with the loading and end conditions. It has been seriously suggested that it is a
function of these conditions and not an innate property of the truss. The present analysis
shows that this apparent variability results from a shortcoming of the continuum analogy.
The direct application ofgeneralized beam theory to finite-difference analysis uses stiffnesses
which are constant for any truss and produces additional shear-like terms associated with
the flexural stiffness, accounting for the above apparent shear-stiffness variability. The
internal stresses can be determined from the characteristic responses to the resultant loads.
Using the finite-difference approach, engineering beam theory may be as accurate as when
it is applied to ordinary prismatic beams. Indeed, for statically-determinate trusses it can
be exact.
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APPENDIX

The summation formula for polynomials is

N II XP = --[(N-B)P+'-(-B)p+l]
X~l p+1

where B" in the binomial expansion of the right-hand side is understood to be the nth Bernoulli number. The
solution of the finite-difference equations is aided by use of the following table.

f(X) "'-'f(X) ("'V) -'f(X)

X ~X2

X 1X(X-I) i X )

X' iX(X-1)(2X-1) ~(X4_X2)

Xl [1 X(X-I)]' foX5_~X3

X4
~Xs-1X4+~Xl-foX fox· - ~X4 +~X2

where a constant must be added to the terms in the second column and and an arbitrary linear expression in X
added to the terms in the third column. Further formulae will be found in Jordan (1965) for example.


